

DÓNDE

CEIGRAM-UPM
Paseo de la Senda del Rey, 13 (Madrid)

IMPARTEN

UNIVERSIDAD POLITÉCNICA DE MADRID

sisvitimad@ptvino.com
(Plazas limitadas por orden de solicitud)

18 junio | 16:00 - 20:00 | presencial | gratuito

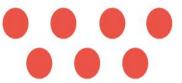
· DIRIGIDO A VITIVINICULTORES DE LA COMUNIDAD DE MADRID ·

CURSO DE CAPACITACIÓN EN SISTEMAS DE RIEGO EN VIÑEDO

- Elementos del sistema de riego y su mantenimiento
- Cuantificar las necesidades hídricas en un viñedo tipo en la C. de Madrid
- Determinar la cantidad de agua necesaria a aportar mediante riego
- Decidir la gestión del riego cuando la dotación de agua es limitada
- Conocer el estado hídrico del viñedo

ORGANIZA

FINANCIA

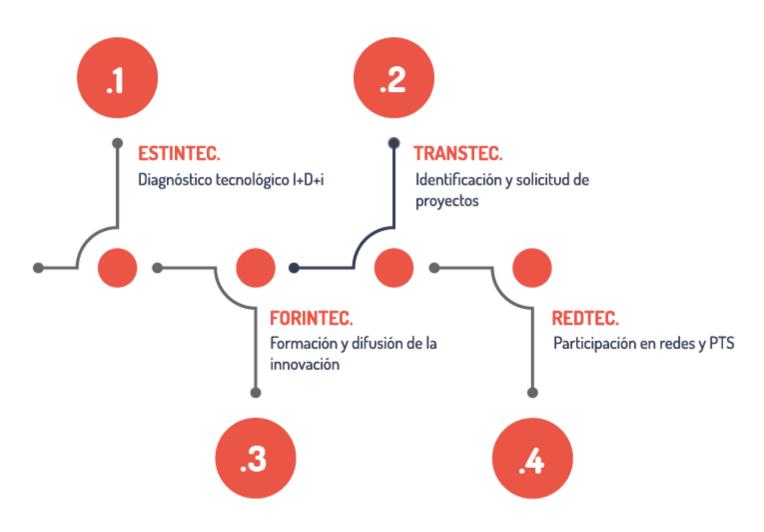

Actividad del Proyecto "Plan Director para impulsar el sistema de innovación en el sector vitivinícola de la Comunidad de Madrid" de Ref.: OI2019 PTV-5 5681, concedido en la Convocatoria 2019 de ayudas para potenciar la innovación tecnológica e impulsar la transferencia de tecnología al sector productivo comprendido en las prioridades de la Estrategia Regional de Investigación e Innovación para una especialización inteligente (RIS3) de la Comunidad de Madrid a través de entidades de enlace de la innovación tecnológica, cofinanciado en un 25% por el Fondo Europeo de Desarrollo Regional y en otro 25% por la Comunidad de Madrid en el marco del programa operativo FEDER 2014-2020

Contribuir a la creación de un clúster vitivinícola madrileño para fortalecer su sistema de I+D+i

2020 2021 2022

SISVITIMAD pretende poner en valor las características diferenciales de los vinos de Madrid

Financiado por:


- 25% por la Consejería de Ciencia, Universidades e Innovación de la Comunidad de Madrid.
- 25% por la Unión Europea a través del Fondo Europeo de Desarrollo Regional (FEDER 2014-2020).

.actividades

FORINTEC.

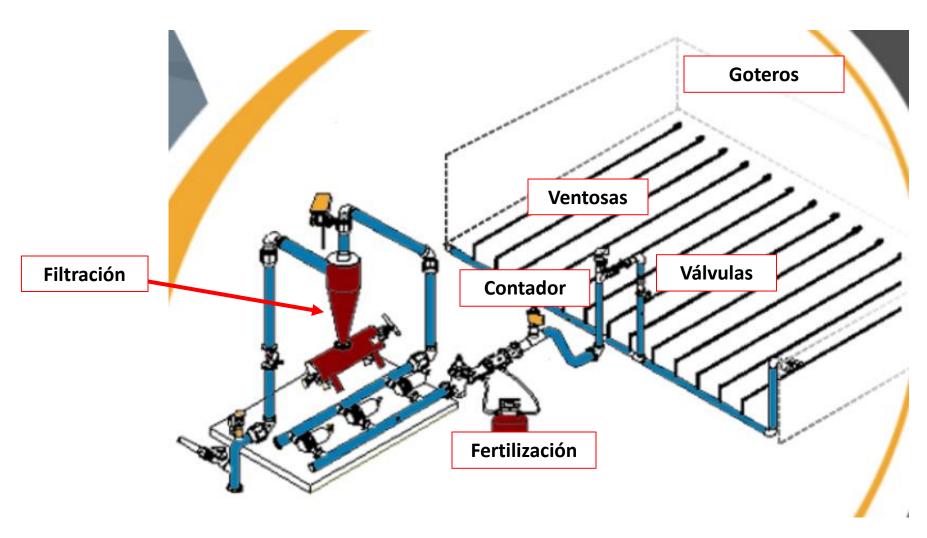
Formación y difusión de la innovación

.3

www.ptvino.com/es/sisvitimad/

PROGRAMA DEL CURSO

Horario	Contenidos	Ponentes
16:00 – 16:10	BIENVENIDA	Plataforma Tecnológica del Vino
16:10 – 17:00	1. Elementos del sistema de riego y mantenimiento anual	Carlos González (Regaber)
17:00 – 17:55	 Cuantificar las necesidades hídricas en un viñedo tipo en la Comunidad de Madrid Determinar la cantidad de agua necesaria a aportar mediante riego Decidir la gestión del riego cuando la dotación de agua es limitada 	Pedro Junquera (GIVITI)
17:55 – 18:05	DESCANSO	
18:05 – 20:00	5. Conocer el estado hídrico del viñedo	Pilar Baeza y Carmen Fernández (UPM) Pablo del Río (Plantae)



Riego es Regaber · Cultivando el futuro - YouTube

COMPONENTES DE LA INSTALACION DE RIEGO

Pinchados

Integrados

CLASIFICACION DE LOS EMISORES

- Según la conexión del goteo a la tubería:
 - interlinea
 - pinchado
 - integrado
 - · sobre tubería
 - · sobre cinta

- Según su régimen hidráulico:
 - laminar. X > 0.65
 - turbulento. X=0.65
 - -0.4
 - autocompensante. X=0

TUBERIA DE GOTEO

Cintas

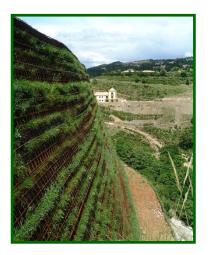
Anual


Multicampaña

Multicampaña

TURBULENTO

- Caudales de 1 a 8 l/h.
- Espesores de 0,4 a 1,2mm.
- Diámetros de 12, 16, 20, 25.


Se utilizan principalmente:

- Fincas pequeñas con laterales cortos.
- Fincas con pendientes constantes.
- Cultivos de pocas campañas.

AUTOCOMPENSANTE

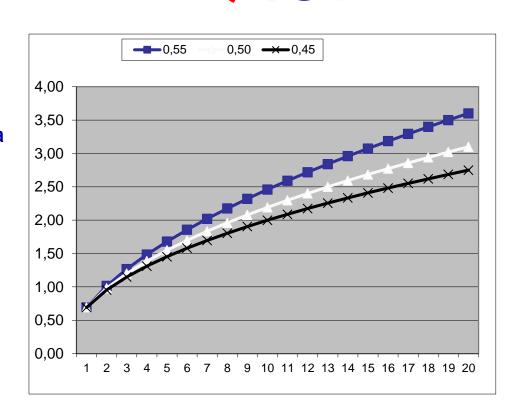
- Caudales de 0,5 a 4 l/h.
- Espesores de 0,4 a 1,2mm.
- Diámetros de 12, 16, 20, 25.

Se utilizan principalmente:

- Fincas grandes.
- Pendientes pronunciadas.
- Invernaderos.
- •" Riego subterráneo"

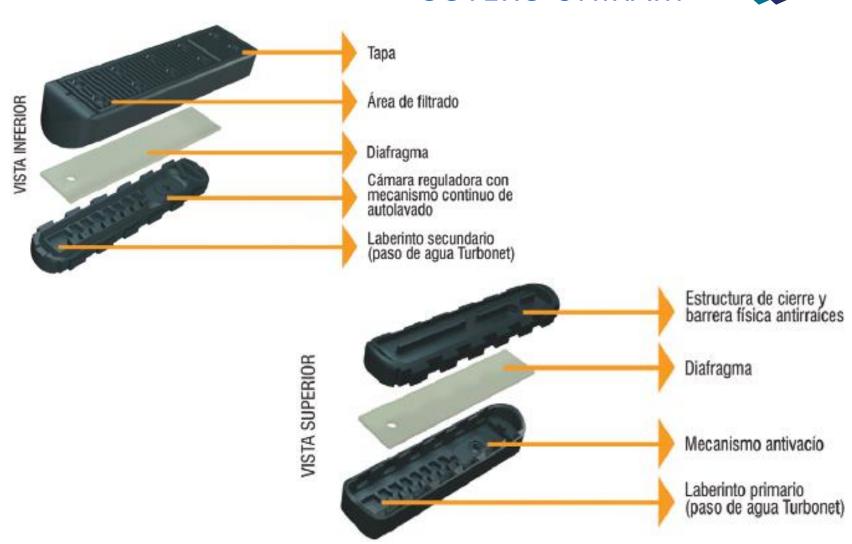
Curva Característica de un gotero

Q Vs P


$$Q = K * P X$$

Q = Caudal del emisor (I/h)

K = Coeficiente de descarga (inherente a cada emisor, debe ser requerido al fabricante)

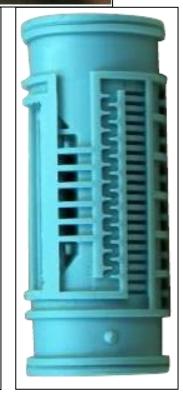

P = Presión (m.c.a.)

x = Exponente de descarga

GOTERO UNIRAM

<u>UniRAM® · La tubería de goteo autocompensante más</u> avanzada del mundo - YouTube

Regaber Matholding group


Laberintos

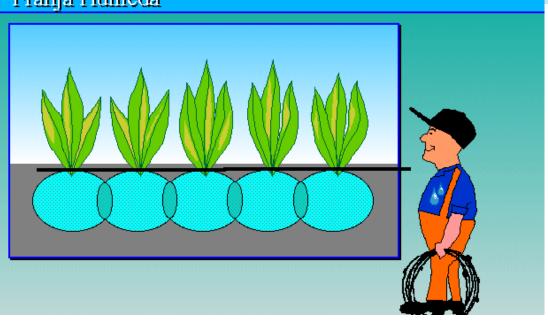
Laberinto TURBONET

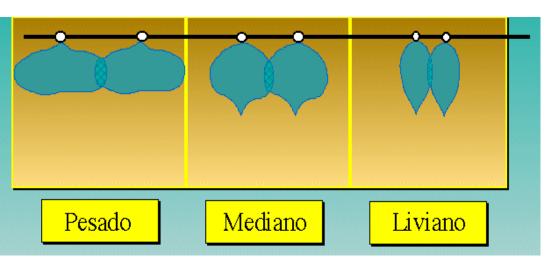
Mecanismo antisucción o antisifón

- Evita la entrada de agua y suciedad por succión (A)
- Evita la entrada de agua por inundación del campo (B)

A B

Sistema físico antiraíces


- Gran piscina y orificios no coincidentes
- Pestañas que evitan la entrada al laberinto



Franja Humeda

LA TEXTURA DEL SUELO **NOS CONDICIONA LA ELECCION DE LA TUBERIA DE GOTEO**

Goteros Autocompensantes **DN16 y DN 20**

Uniram 2,3 l/h - 75cm Uniram 1,6 l/h - 60cm

Dripnet 2,0 l/h - 75cm Dripnet 1,6 l/h - 75cm

SISTEMAS ANTIDRENANTES

SISTEMAS ANTIDRENANTES

Solución:

VÁLVULAS ANTIDRENANTES

» Utilización de las válvulas DNL

» Instalación de las válvulas DNL al principio del lateral:

A través de esta instalación, se previene/reduce el volumen de agua drenada desde la tubería de distribución (conducción secundaria) a los laterales. La válvula DNL a escoger dependerá de la topografía del terreno.

La máxima diferencia de altura de la tubería de distribución con que se utilizará un dispositivo antigoteo será de 8 m. Más allá de esa altura, la eficacia de la prevención del drenaje será parcial.

» Instalación de las válvulas DNL en diferentes puntos a lo largo del lateral:

Con esta instalación, la válvula DNL actúa al final del turno de riego, desconecta los segmentos del lateral unos de otros y genera puntos de drenaje a lo largo del mismo (en lugar de hacerlo sólo en la parte más baja).

Combinando adecuadamente goteros antidrenantes con las válvulas DNL se puede conseguir un sistema de riego totalmente antidrenante.

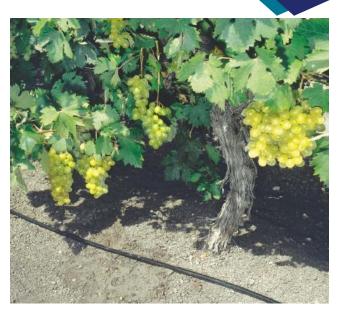
Color	Presión de cierre (bar)	Presión de apertura (bar)
Rojo	0.2	0.8
Negro	0.4	1.2
Marrón	0.8	1.6

TIPOS DE INSTALACIÓN

Suspendido

SUPERFICIAL

Ventajas


- Fácil de Instalar
- Visible

Desventajas

- Demanda un control químico de las malezas
- Daños mecánicos y de animales.

Tecnología

 Lateral de riego con goteros integrados autocompensante

SUSPENDIDO

Ventajas

- Visible y fácil de controlar
- Permite control mecánico de malezas

Desventajas

Costes de instalación y del alambre

Tecnología

- En pendiente <25%: Tubería con goteros integrados autocompensantes
- En pendiente > 25%: Gotero botón autocompensado

TIPOS DE RIEGO SUBTERRÁNEO

RIEGO SUBTERRÁNEO

Instalación, cercano a cepas:

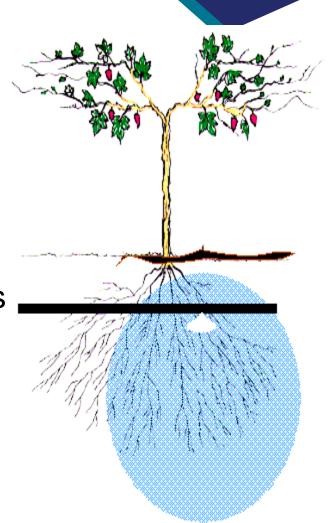
- A una distancia de 40-50 cm de la hilera de cepas –
 Nunca bajo la rodera del tractor !!!
- A una profundidad de 25-40 cm
- Puede ser implementado desde el primer año de la plantación.

RIEGO SUBTERRÁNEO

Instalación, entre hileras:

Enterrado a 25-50 cm de profundidad

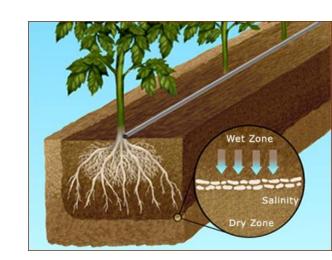
Nunca bajo las roderas de la maquinaria agrícola.


Es posible desde la segunda o tercera temporada de cultivo.

SUBTERRÁNEO

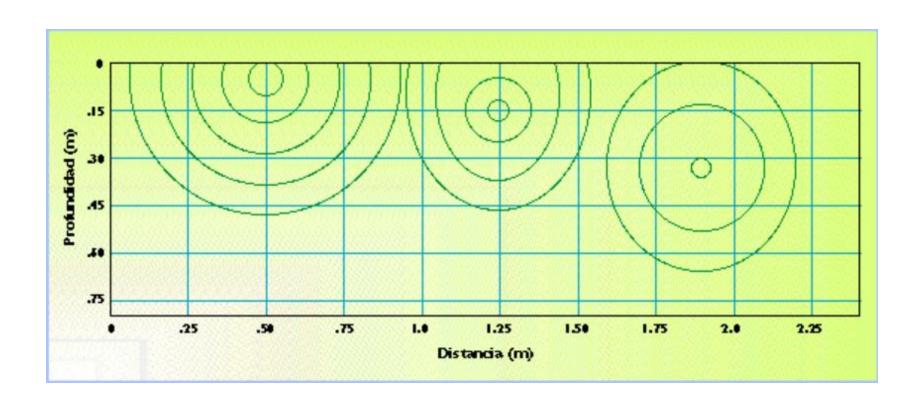
Ventajas

- Protegido de los daños físicos.
- No hay evaporación.
- Disminuye mas el crecimiento de malas hierbas
- Aplicación mas eficiente de agua y fertilizantes. Importante para P.
- Incentiva la creación de un sistema radicular más profundo.



SUBTERRÁNEO

Desventajas


- "Invisible" dificulta el acceso si necesitara reparaciones.
- El ambiente subterráneo demanda una atención y tecnologías específicas.
- No enterrar en suelos con pizarra.
- No enterrar si regamos con agua muy calcárea.

PROFUNDIDADES DE ENTERRADO

RIEGO SUBTERRÁNEO

Diseño: Recomendaciones generales.

- No diseñar sectores muy grandes. A menor tamaño:
 - 1. Manejo mas preciso. (Tipos de suelo, etc)
 - 2. Menor tiempo de llenado del sistema. Mas uniformidad.
- Ubicar las electroválvulas en la parte alta de los sectores, si es posible en un punto medio.
- No usar goteros antidrenantes y tener previsto el drenaje del sistema. Evitar el efecto llamada.

Manejo:

• Evitar el "efecto llamada".

DISTRIBUCIÓN DE LAS RAICES



Instalación, siempre:

- Rellenar con el mismo suelo.
- Compactar.
- Realizar un subsolado, si hay presencia de piedra o roca.
- No se recomienda en suelos de pizarra.

Material: Goteros

Autocompensantes

"CU>98"

• Resistentes a la obturación

- Con mecanismos anti-succión
- Protecciones antiraíces, físicas o químicas

Material: Goteros Anti-sifón.

Mantenimiento: Tratamientos preventivos

• Presencia de materia orgánica:

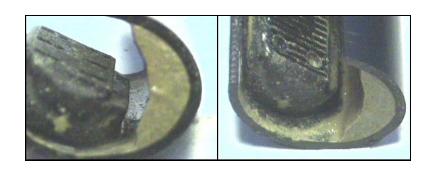
Tratamientos con cloro.

Tratamientos con H2O2. (Recomendado)

• Problemas de cal:

Tratamientos con ácido.

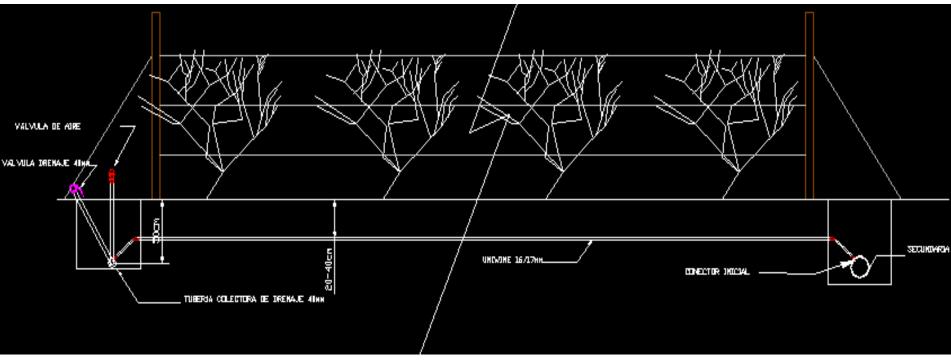
Ac. Nítrico preferentemente.


Posible intrusión de raíces.

Treflan (trifluraline) prohibido en Europa

Pendimetalina: Autorizado

Mantenimiento: Lavado de laterales



Velocidad mínima recomendada: 0,4 m/s

Diseño: Válvulas de lavado.

VÁLVULAS

RECOMENDACIONES DE INSTALACIÓN

- En la parte alta.
- En agrupaciones.
- Integrado en la línea.

TIPOS DE VÁLVULAS

Las válvulas se utilizan para abrir/cerrar y regular el riego de diferentes parcelas.

Pueden ser:

- Válvulas manuales.
- Válvulas hidráulicas.
- Válvulas eléctricas (electroválvulas).

VÁLVULAS MANUALES

Válvula Mariposa

Válvula Compuerta

Válvulas Motorizadas

VÁLVULAS HIDRAÚLICAS

VÁLVULA HIDRÁULICA REDUCTORA DE PRESIÓN

Válvula hidráulica

Piloto reductor

Válvula hidráulica reductora de presión

Piloto 29-50M Plástico · Regulador de presión de 3 vías - YouTube

ELECTROVÁLVULAS

Válvula hidráulica

Solenoide

Electroválvula

AQUATIVE DC

AQUATIVE AC

Sección de cable (mm²)	Máxima distancia (m)
0.5	150
1.0	240
1.5	380

Sección de cable (mm²)	Máxima distancia (m)
0.5	600
1.0	2000
1.5	5000

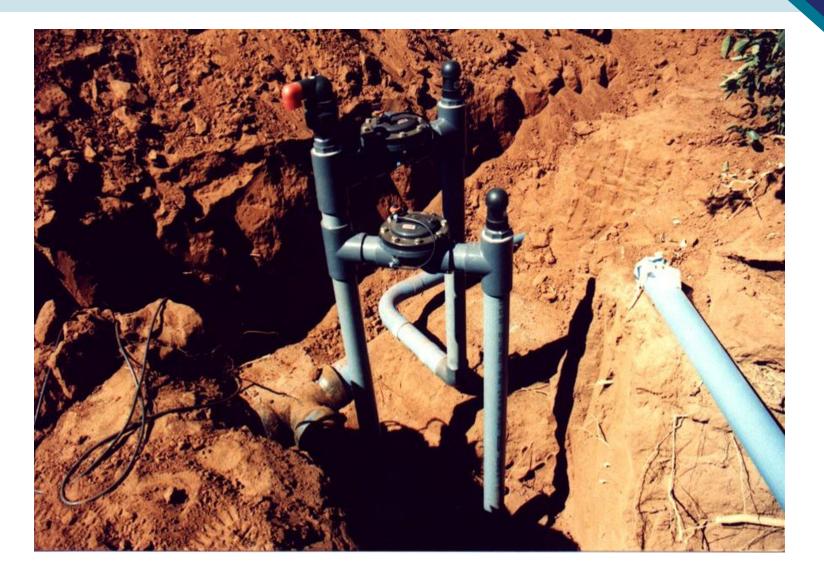
VENTOSAS

TRIFUNCIONALES
o DOBLE EFECTO

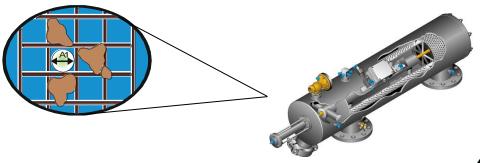
- Realizan función cinética y automática

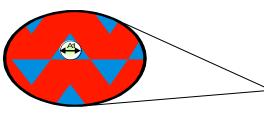
CINETICAS

- Eliminan el aire durante el llenado de la instalación y lo introducen en ella cuando se detiene el riego.


AUTOMATICAS-PURGADORES

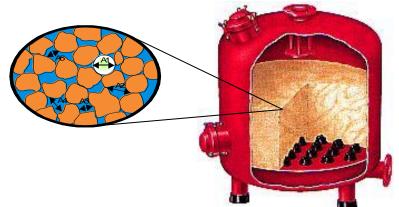
- Eliminan el aire cuando la instalación está presurizada



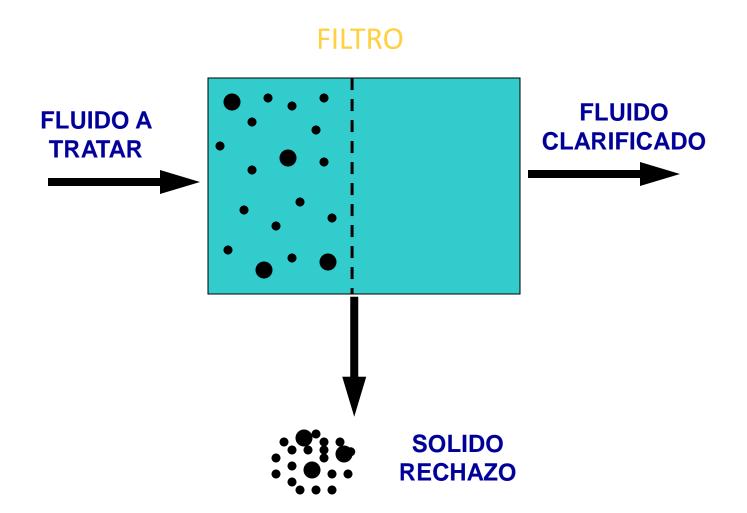

Filtración en superfície

FILTRACIÓN

Filtros de malla



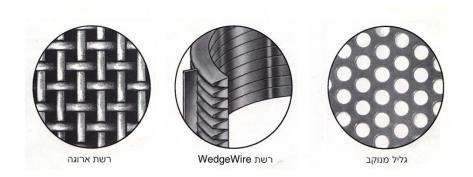
Filtración en profundidad Filtro de anillas



Filtro de arena

SEPARACIÓN SÓLIDO-LÍQUIDO

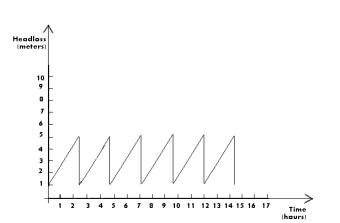
EL GRADO DE FILTRACION
DEPENDERA DEL TAMAÑO
DE ORIFICIO DE LA
BOQUILLA (aspersor,
gotero) A PROTEGER. EN
AGRICULTURA EL MAS
UTILIZADO ES EL DE

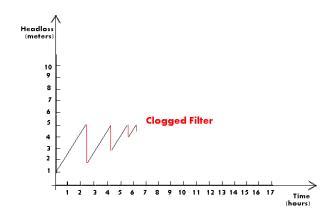

120 MESH = 130 MICRAS**

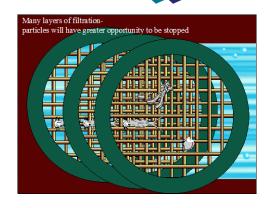
EL EMISOR DEFINE EL GRADO DE FILTRACION En qué unidades definimos el grado de filtrado ??

1.- En MESH

El mesh es la cantidad de orificios por pulgada lineal.


2.- En MICRONES (Tamaño de orificio): 1000 mic. = 1 mm





Existen dos parámetros para elegir el filtro necesario:

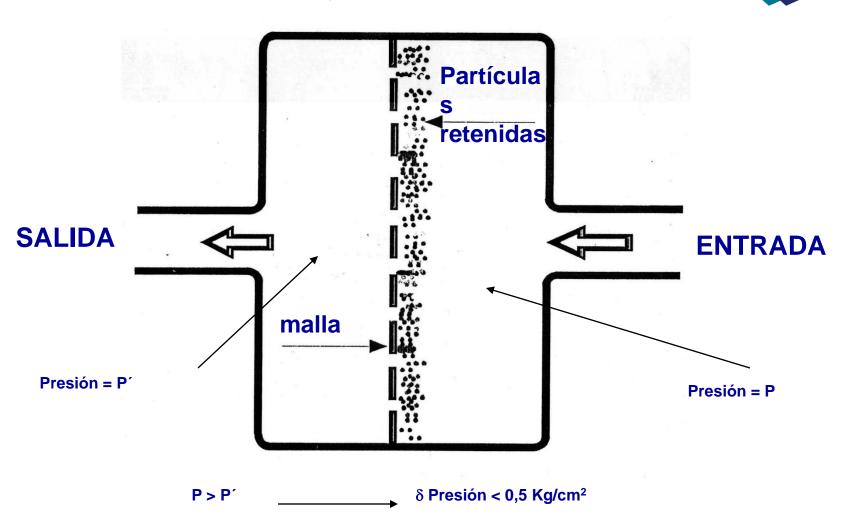
- 1. Eficiencia de separación de las partículas a retener
- 2. Eficiencia de retrolavar automáticamente y mantener ciclos constantes

EFICACIA FILTRACIÓN + LIMPIEZA

FILTROS MALLA

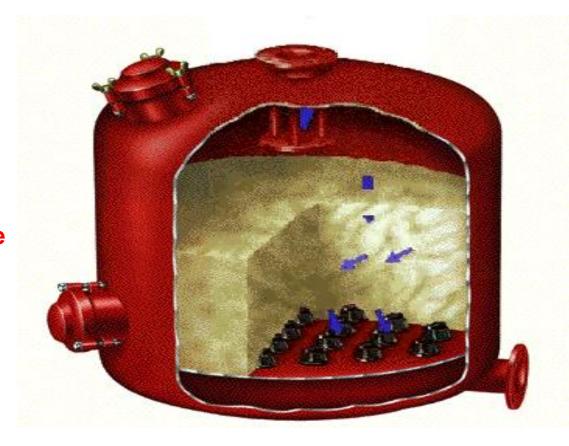
SEMIAUTOMATICOS

AUTOMATICOS


Mini Sigma · Filtro automático de mallas autolimpiante - YouTube

TIPO DE FILTRO	FILTROS DE MALLA
TIPO DE FILTRACIÓN	EN SUPERFICIE
EFICIENCIA FILTRACIÓN	BAJA (único punto de corte)
EFICIENCIA RETROLAVADO	ALTA (BOQUILLAS SUCCIÓN / cepillos)
DURACIÓN CICLOS LAVADO	CORTO (de 30" a 1 ½')
TIPOLOGIA	FILTROS PRESURIZADOS
	HIDRÁULICOS / ELECTRICOS
¿CORTE DEFINIDO?	SÍ (50 a 3 mm, 130 micras)

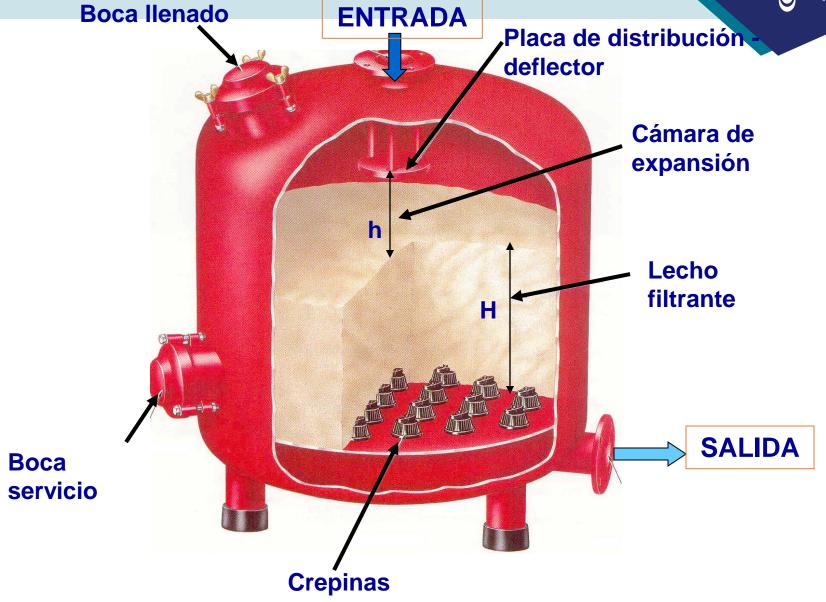
ESQUEMA FILTRO MALLA

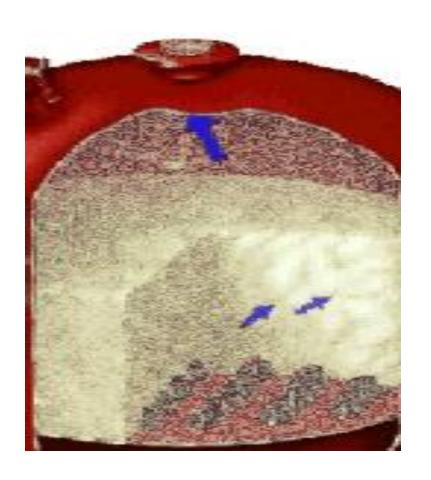


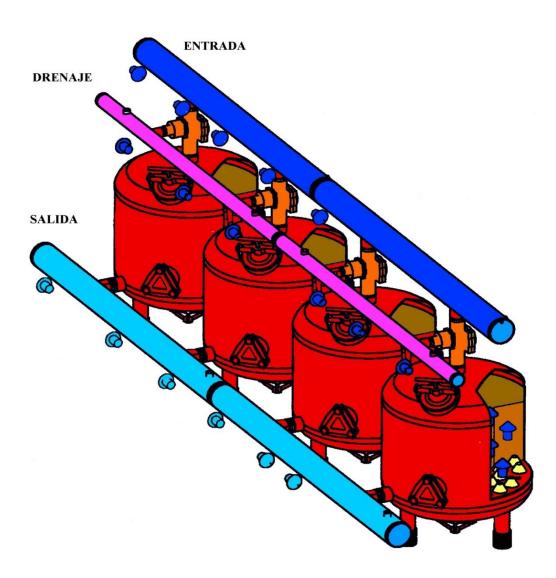
FILTRACIÓN ARENA

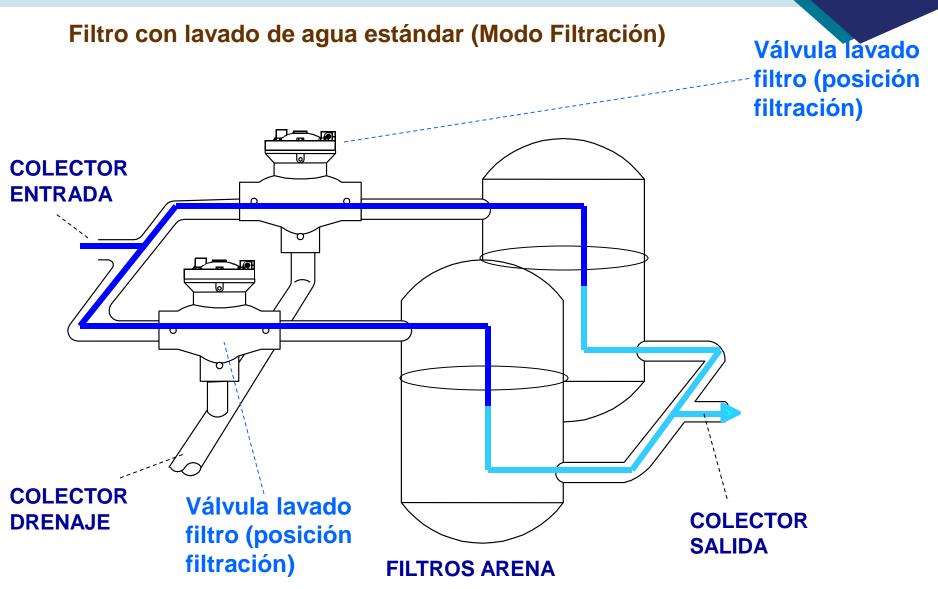
FILTRO DE ARENA

El filtro de gravas es un tanque que contiene aproximadamente 16" de volumen de gravas (partículas de entre 1 a 2 mm) que filtran los sólidos reteniendolos por: carga eléctrica, fricción y diferencia de tamaño.

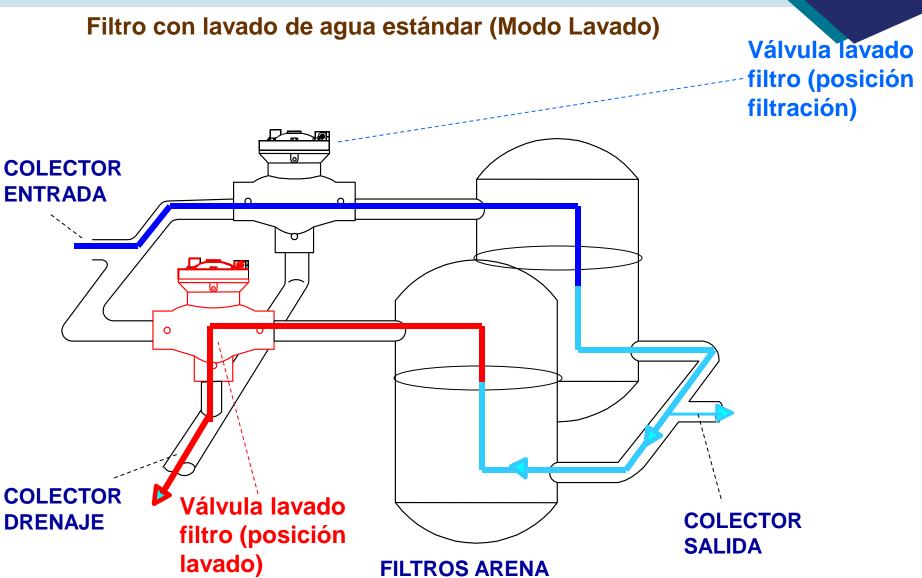

ES RECOMENDABLE CUANDO
TENEMOS UN AGUA CON
MUCHO CONTENIDO DE
MATERIA ORGANICA


TIPO DE FILTRO	FILTROS DE ARENA
TIPO DE FILTRACIÓN	EN PROFUNDIDAD
EFICIENCIA FILTRACIÓN	BUENA (reducción de turbidez)
EFICIENCIA RETROLAVADO	BAJA (formación caminos preferenciales)
DURACIÓN CICLOS LAVADO	LARGA (de 3 a 10-15 minutos)
TIPOLOGIA	FILTROS ABIERTOS / CERRADOS
	MONOCAPA / MULTICAPA
¿CORTE DEFINIDO?	NO


FILTRO DE ARENA

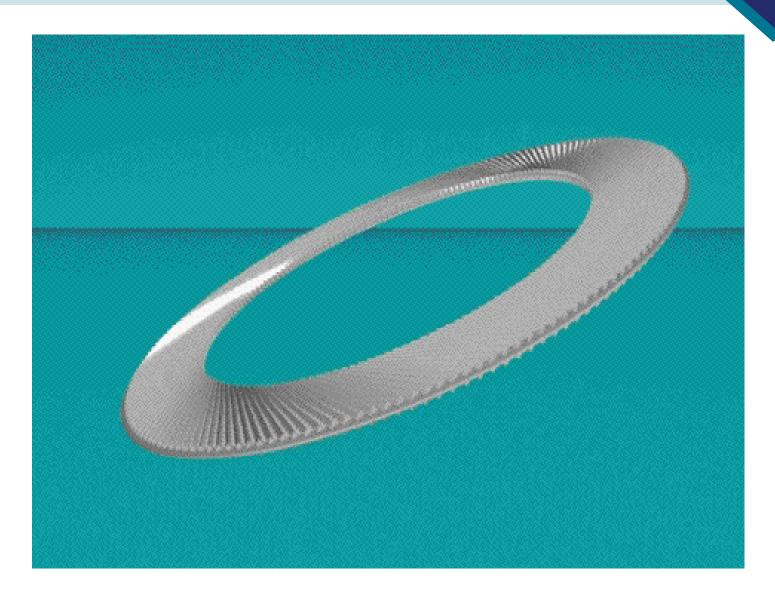

El tiempo y la energía necesarias para retrolavar los filtros de gravas son altas y caras.

La limpieza de varios niveles de gravas aglomeradas es problemática, en algunos casos...imposible.



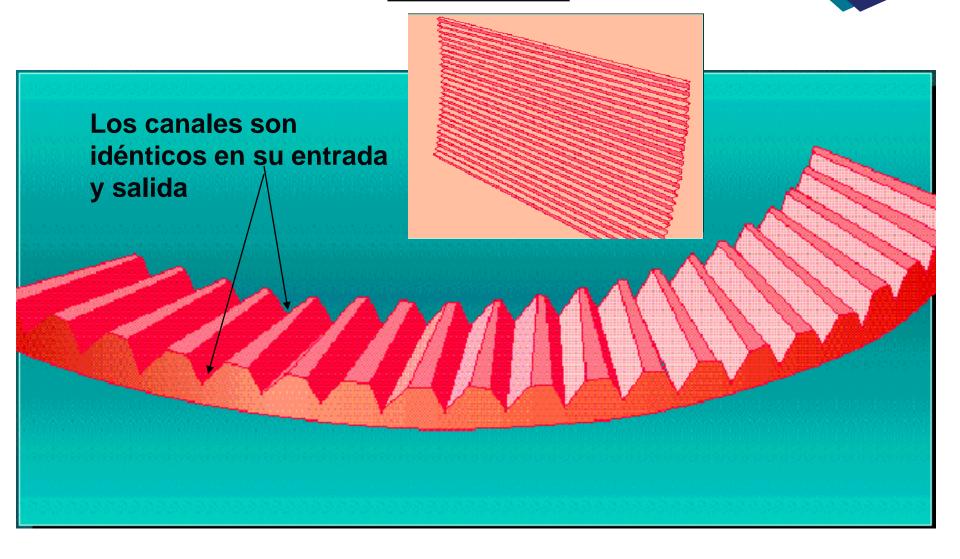
FILTRACIÓN ANILLAS

BATERIAS DE FILTROS AUTOMÁTICOS

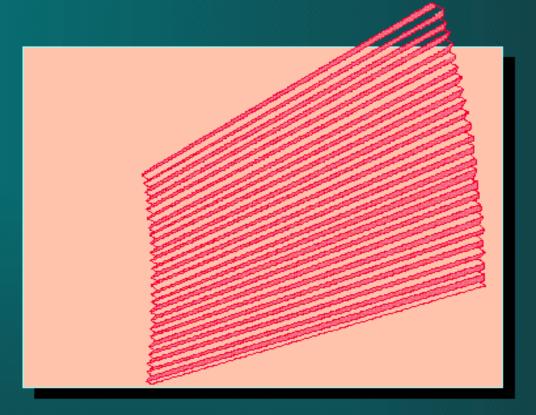

CONTRALAVADO ESTÁNDAR A 2,8 bar DE PRESION

<u>Filtración de anillas Amiad® · Sistema anticorrosión, muy</u> duradero y con el mínimo mantenimiento. - YouTube

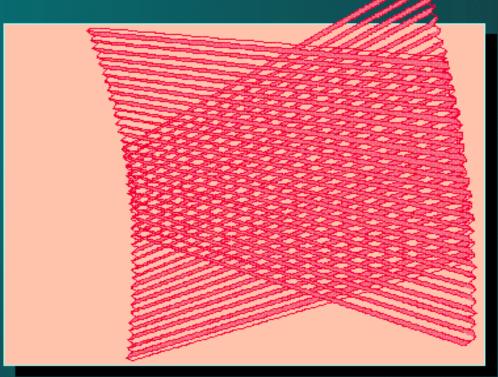
TIPO DE FILTRO	FILTROS DE ANILLAS	
TIPO DE FILTRACIÓN	EN PROFUNDIDAD	
EFICIENCIA FILTRACIÓN	BUENA	
EFICIENCIA RETROLAVADO	ALTA	
DURACIÓN CICLOS LAVADO	CORTO (de 15 a 30")	
TIPOLOGIA	MANUALES / AUTOMÁTICOS (SKSK)	
¿CORTE DEFINIDO?	SÍ (20-400 micras, 130 micras)	



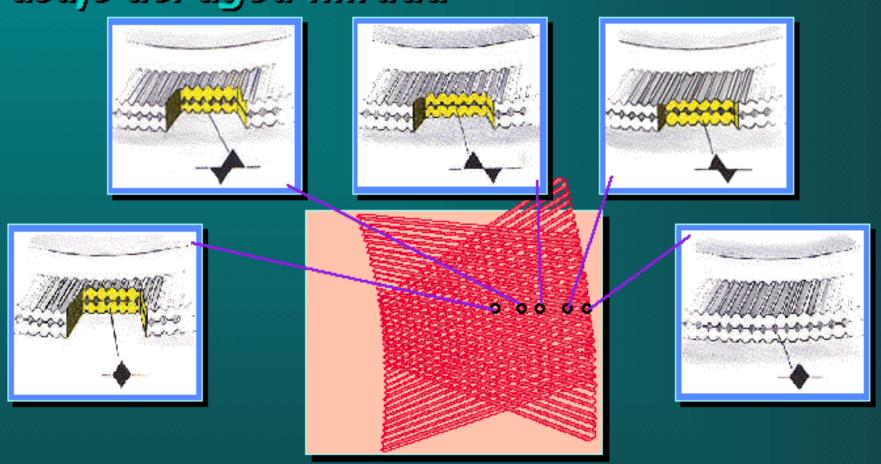
Discos de filiración Arkal



SECCION DE UN DISCO


Disco filiranie

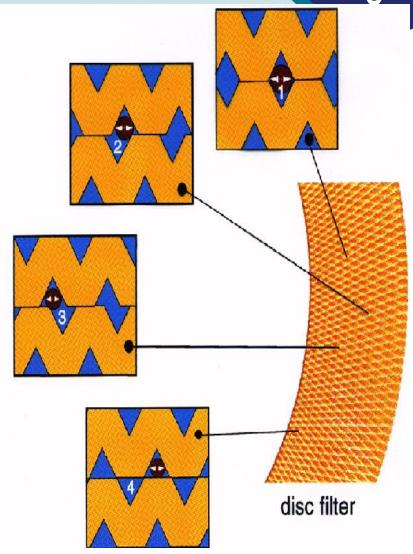
Sección del Disco Arkal



Discos de filiración Arkal

Dos Discos uno encima del otro

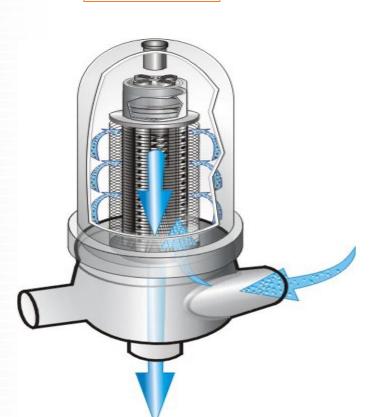
Pasaje del agua filtrada

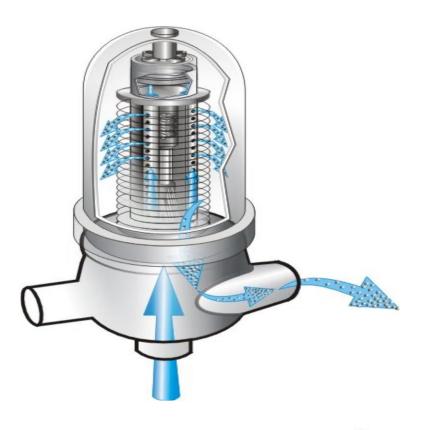


5 Pasajes en la intersección de discos

Regaber matholding group

El número de intersecciones varía entre 18 a 24, dependiendo del grado de filtración, que se desea obtener.


Estas intersecciones forman grandes cavidades, acto que genera una turbulencia en el flujo, debido a la trayectoria irregular, con gran probabilidad que las partículas sólidas queden retenidas en la próxima intersección

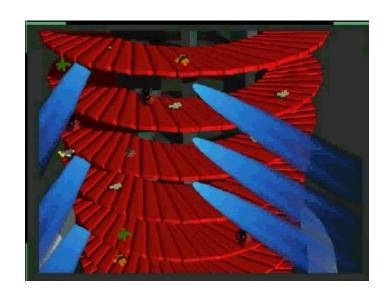


Filtrado de discos automáticos

Filtrado

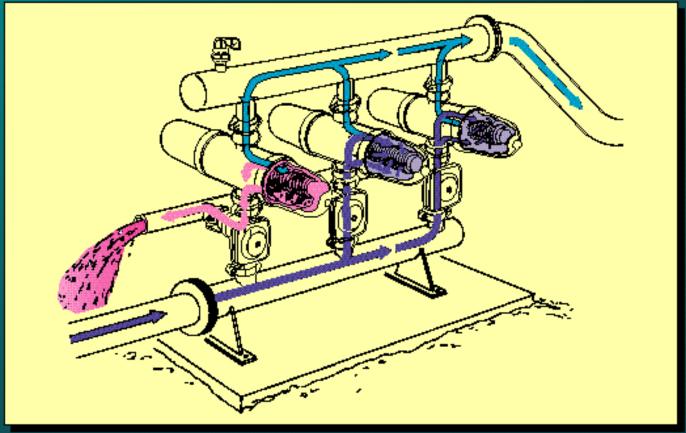
Contralavado

Next


One back

-50- a-180700-gn-e

El retrolavado del sistema Spin Klin es rápido, ahorrando agua, tiempo y energia.



La limpieza de niveles de discos entreabiertos es simple y efectiva

Sistemas automáticos Spin Klin

Baterias Spin Klin 3"

📕 1 filtro en estado de retrolavado

BOMBAS

VERTICALES

- Para instalaciones de funcionamiento contínuo
- Altura de aspiracióm mayor de 5-6mca
- 25-30% más caras que las sumergibles y horizontales

SUMERGIBLES

- -Bombeo de pozos
- Alturas de aspiración pequeñas (menores de 5mca).

HORIZONTALES

- La parte hidraúlica está fuera del agua → Hay que garantizar cebado (bomba de cebado).
- Para pequeñas instalaciones y rebombeos

DOSIFICADORES DE ABONO

Dosificadores Hidraúlicos

Bombas Eléctricas

BOMBAS DOSIFICADORAS ELECTRICAS

- Alimentación eléctrica monofásica o trifásica.
- Posibilidad regulación cantidad de fertilizante independientemente de la presión del agua.
- Modelo pistón o diafragma.
- Opción de pistón en acero inoxidable AISI 316L o cerámico en (modelo pistón)
- Opción de cabezal en acero inoxidable AISI 316L o plástico (PVC o PVDF)
- •Principio de funcionamiento; en cabezal se aloja un pistón o diafragma (según modelo P o D) que en fase de retroceso crea un vacio que permite la entrada de fertilizante en el cabezal. En la fase de avance el líquido comprimido abre la válvula de impulsión e inyecta el líquido.

ACCESORIOS

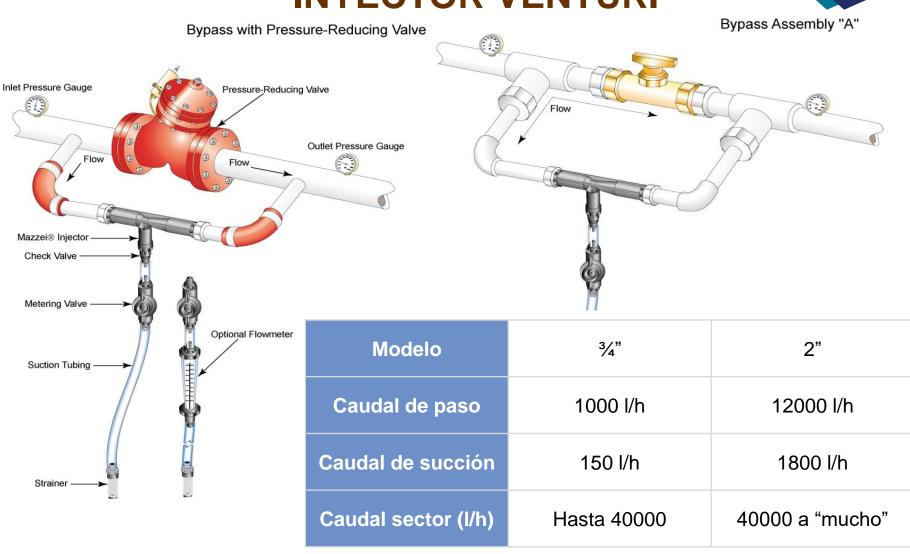
Soplantes

Agitadores

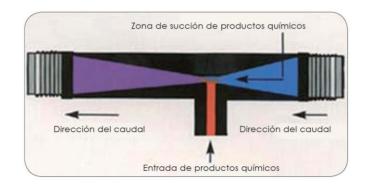
Conjuntos completos: depósito - agitador bomba

- 1.Bomba dosificadora.
- 2. Depósito dosificador.
- 3.Agitador.
- 6. Filtro para productos químicos.
- 7. Válvula manual para productos químicos.

INYECTOR VENTURI

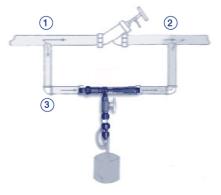

- 2 modelos principales: D 2", F ¾".
- •Sin partes móviles.
- •Inyección hasta 1.800 l/h (modelo 2") y 150 l/l (modelo 3/4").
- Operación rápida y sencilla.
- Adaptable a todos los sistemas de riego.
- Materiales de alta calidad resistentes a productos químicos.

INYECTOR VENTURI



Principio de funcionamiento inyector Venturi:

Principio de funcionamiento por el vacio creado por un avanzado sistema Venturi, que permite la inyección de fertilizante con poca diferencia de presión entre la entrada y la salida de agua en el inyector (entre el 5-75%). El agua fluye por un espacio de convergencia que se va ensanchando creando el vacío.


Modelo		F (3/4")	D (2" x 12)
Materiales	Cuerpo	H.G. polipropileno copolimero	Plástico reforzado con fibra de vidrio
	Piezas internas	Plástico resistente a productos químicos	Plástico resistente a productos químicos
Conexiones	Diámetro	3/4" macho	2"
	Tipo de rosca	Macho BPT, BSP	Hembra NPT, BSP
Dimensiones	Altura (mm)	352	380
	Longitud (mm)	290	520

Tipos de instalación

» Instalación del inyector en bypass, con una válvula manual regulable.

Este método se basa en una caída de 30% de presión con la válvula manual. Se debe tener cuidado para asegurar que la presión de salida es suficiente para operar el sistema de riego.

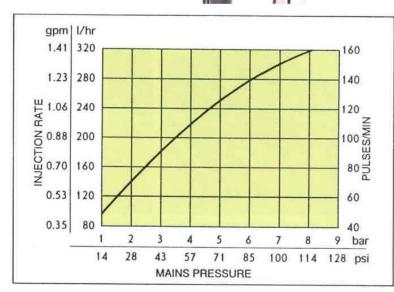
» Instalación del inyector en bypass, con una bomba de agua

Este método utiliza las diferencias de presión existentes y ahorra energía adicional.

» Instalación del inyector en bypass, con un regulador de presión

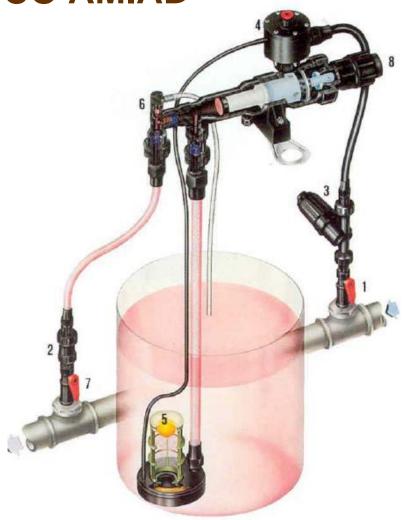
Este método se basa en una caída de presión suficiente por parte del regulador, sin válvulas adicionales.

» Instalación del inyector en línea


Este método se utiliza en casos donde el caudal en el sistema es bajo o si la reducción de presión no es un problema.

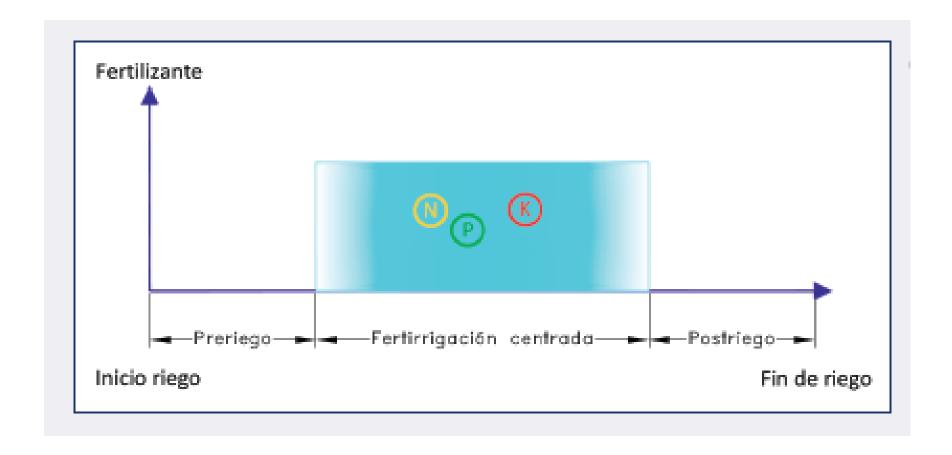
INYECTOR HIDRÁULICO AMIAD

- •Principio de funcionamiento: se acciona por un motor hidráulico que funciona con la propia presión del agua.
- •Resistente a la mayoría de productos químicos utilizados en agricultura.
- •Cantidad de producto inyectado regulable en función de la presión de entrada y salida.
- •Instalable en cualquier diámetro de tubería.
- •Puesta en marcha o detención de forma manual o automática.
- Presión de trabajo: 1-8 kg

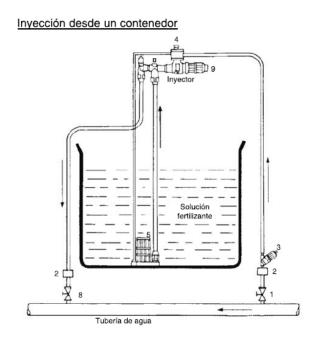

INYECTOR HIDRÁULICO AMIAD

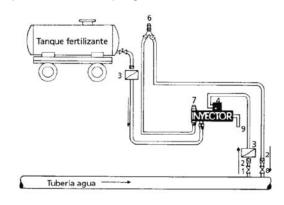
Ventajas

- Preciso.
- Gran capacidad.


Inconvenientes

 Expulsa agua del motor hidrálico 3x1..


Tiempo de post-riego


Tipos de inyectores hidráulicos AMIAD:

- •De succión: se inyecta producto después de ser succionado de un tanque.
- •Duplex: igual al anterior pero con 2 cuerpos de inyección (mayor cantidad inyectada 640l/h)
- •Gravedad: el inyector trabaja en carga, la alimentación de productos químicos es por gravedad.

Inyección desde un tanque

Tipo de alimentación por gravedad.

- 1. Válvula manual
- Válvula antisifón

9. Desagüe de agua

- 2. Acople de unión
- 7. Válvula de purga de aire

3. Filtro

- 8. Válvula manual de línea inyección
- Desconectador automático
- •
- 5. Cabeza de succión

www.regaber.com

CURSO DE CAPACITACIÓN EN SISTEMAS DE RIEGO EN LA COMUNIDAD DE MADRID

RIEGO DEL VIÑEDO EN LA **COMUNIDAD DE MADRID**

Pedro Junquera González pjunquera@giviti.com www.giviti.com

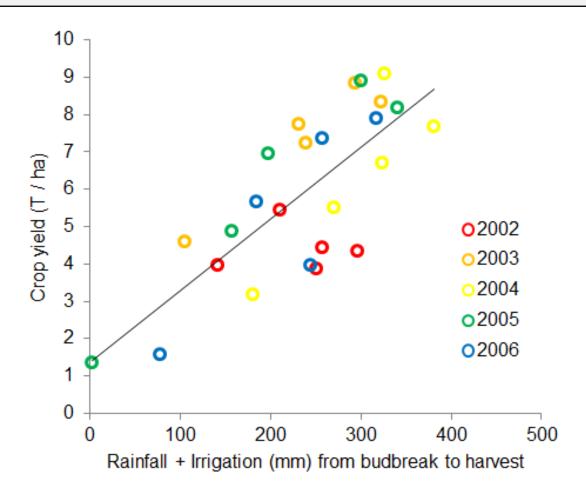
ÍNDICE GENERAL

- Necesidades hídricas del viñedo. Estacionalidad.
- Balance de agua en un viñedo.
 - Disponibilidad de agua. Suelo y precipitación.
 - Estimación del consumo. ETc.
- Riego deficitario.
- Medidas complementarias en caso de escasez de agua.
- Indicadores del estado hídrico. Suelo y Planta.

CONSUMO DE AGUA POR EL VIÑEDO

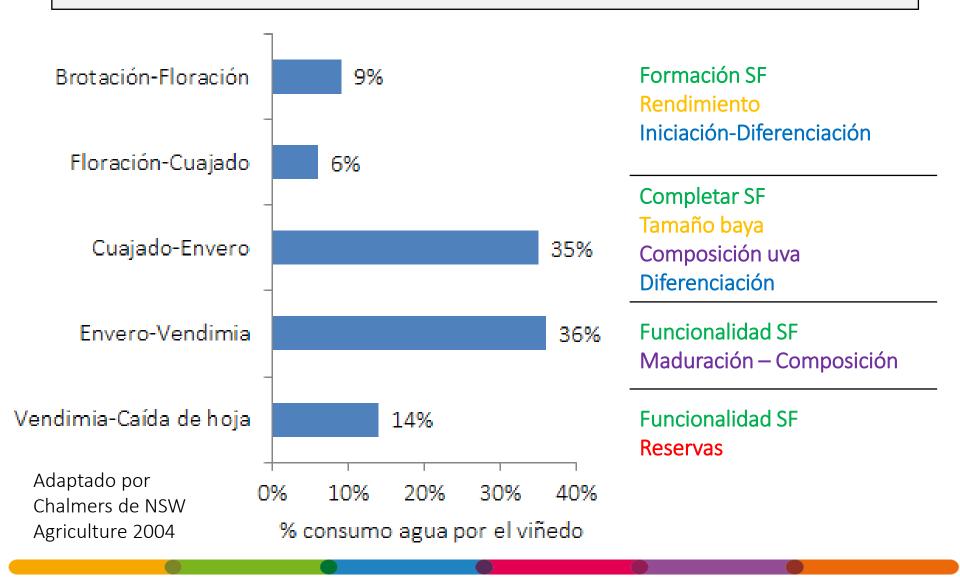
 $200 - 800 (1.100) \text{ mm / año } \rightarrow 250 - 300 \text{ mm / año}$

EJEMPLO: Rendimiento = 8.000 kg/ha uva

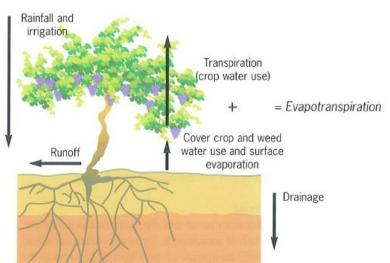

	Kg MS / ha∙año	Reparto (%)
Racimos	2.000	50 %
Hojas + Tallos	1.600	40 %
Raíces + Partes permanentes	400	10 %
TOTAL	4.000	100 %

WUE = 400-600 L agua transpirada / kg MS

1.600-2.400 m³/ha = **160-240 mm**



Cabernet Sauvignon / SO4. Finca "El Socorro", Colmenar de Oreja, Madrid

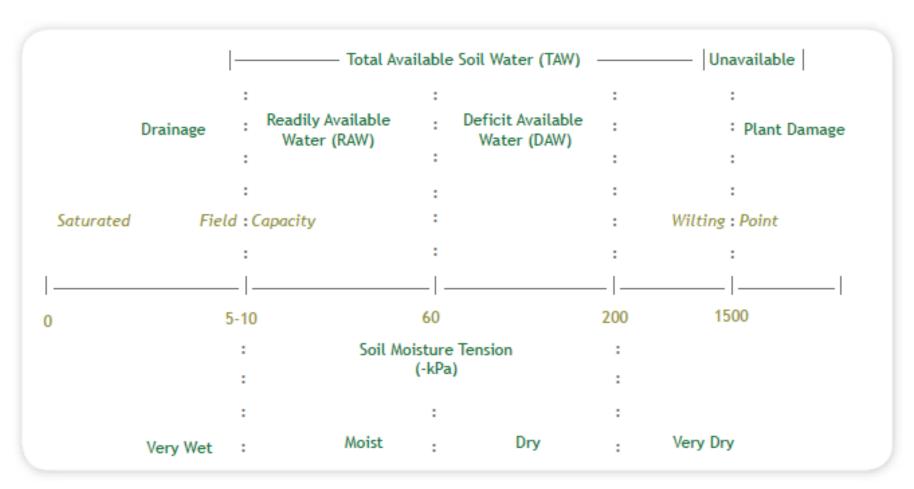


BALANCE DE AGUA EN EL VIÑEDO

Transpiración viñedo
Evaporación suelo (+10-15%)
Consumo enyerbado
Drenaje
Escorrentía

$$Rn = ETc \times Kd - Pe - Afu$$

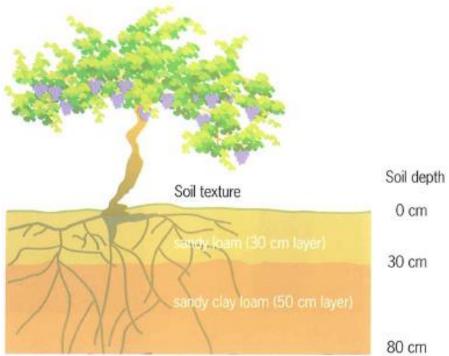
 $Rb = Rn / Er$



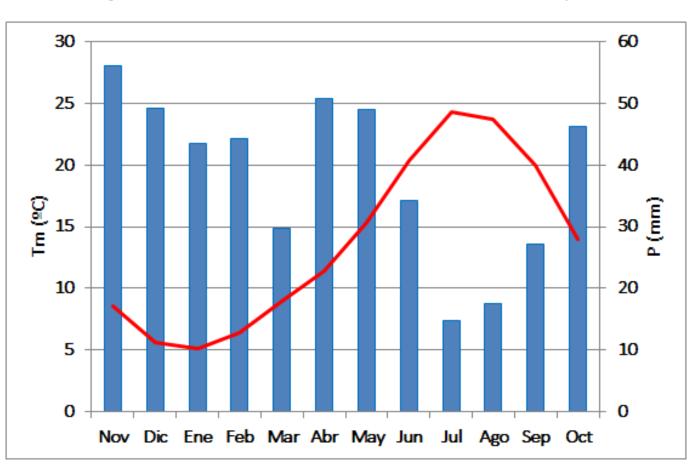
- Profundidad efectiva
 - Horizontes limitantes por causas físicas o químicas
 - Nivel freático
 - Profundidad enraizamiento
- Elementos gruesos (> 2 mm)
- Textura
- Materia orgánica
- Estructura

Volumen de agua disponible en el suelo (mm/cm) entre capacidad de campo y diferentes tensiones

TEXTURE	Soil moisture tension (KPA)					
	-8 TO -40	-8 TO -60	-8 to -200	-8 TO -400	-8 TO -1500 ¹	
Sand (S)	0.36	0.37	0.46	0.49	0.62	
Loamy sand (LS)	0.52	0.55	0.65	0.70	0.86	
Clayey sand ² (CS)	0.55	0.60	0.74	0.80	1.01	
Sandy loam (SL)	0.59	0.64	0.84	0.92	1.15	
Light sandy clay loam (LSCL)	0.65	0.74	1.03	1.11	1.37	
Loam (L)	0.69	0.84	1.00	1.11	2.34	
Sandy clay loam (SCL)	0.61	0.71	1.01	1.13	1.43	
Clay loam (CL)	0.53	0.65	1.03	1.16	1.48	
Clay (C)	0.46	0.57	0.90	1.09	1.49	
Heavy clay (HC)	0.25	0.41	0.49	0.59	1.20	


Nicholas and Wetherby 2004

THICKNESS OF LAYER	MM/CM	CALCULATION	RAW (MM)
30cm	0.64	30 x 0.64	19.2
50cm	0.71	50 x 0.71	35.5
Total rootzone RAW			54.7


Nicholas and Wetherby 2004

DISPONIBILIDAD DE AGUA. PRECIPITACIONES

Diagrama ombrotérmico comarca "Campiña"

P abr-oct = 240 mm P_{ef} abr-oct = 120 mm

P abr-sep = 194 mm P_{ef} abr-sep = 97 mm

(elaborado a partir de Fernández et al. 2013)

Consumo de agua por el viñedo (ETc) depende de:

- Demanda evapotranspirativa (ETo)
- ➤ Superficie foliar del viñedo → Kc
 - ✓ Crecimiento del viñedo

 ← Acumulación de Tª (ITe)
 - ✓ Dimensiones del viñedo ← Sistema de conducción
 - ✓ Distancia entre filas
- Cantidad de agua en el suelo
- Diferencias de crecimiento entre variedades y patrones

ETc = ETo x Kc

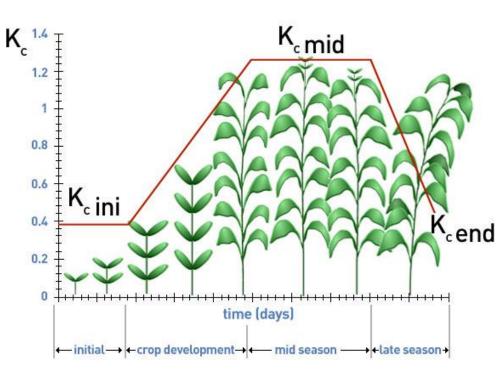
ETo (Evapotranspiración de referencia), depende de:

- ✓ Radiación solar
- ✓ Déficit de presión de vapor (Tª y HR)
- ✓ Velocidad del viento

https://eportal.mapa.gob.es/websiar/SeleccionParametrosMap.aspx?dst=1

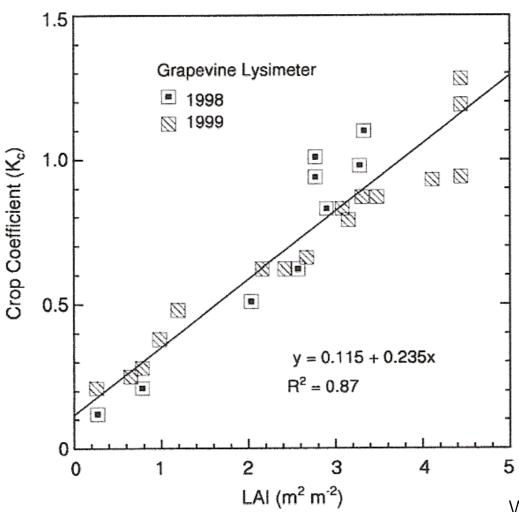
Consulta de datos diarios

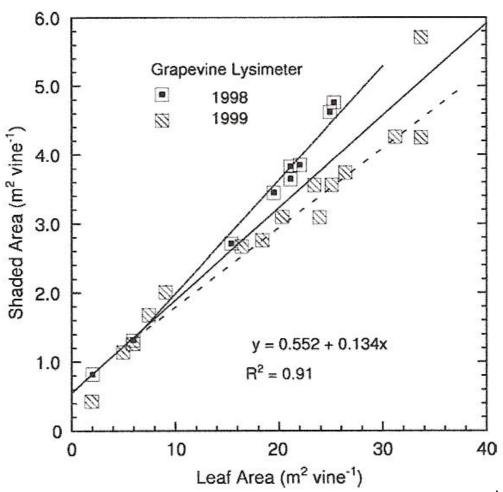
Exportar el informe de datos a un archivo CSV


Arganda

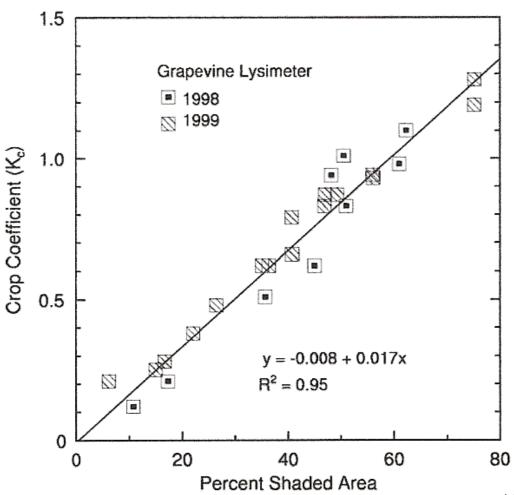
Fecha	Temp Media (°C)	Temp Max (°C)	Temp Mín (°C)	Precip (mm)	P. Efect (mm)	Eto (mm)
11/06/2021	25,45	35,98	17,31	1,03	0,00	7,06
12/06/2021	25,09	34,06	15,87	0,00	0,00	7,27
13/06/2021	26,62	35,32	17,65	0,00	0,00	7,01
14/06/2021	27,79	35,57	19,37	0,00	0,00	7,14
15/06/2021	27,79	36,25	18,72	0,00	0,00	7,01
16/06/2021	25,85	33,73	18,51	6,97	3,43	6,16
17/06/2021	18,09	23,92	14,72	19,47	12,01	3,14

https://eportal.mapa.gob.es/websiar/SeleccionParametrosMap.aspx?dst=1





Williams y Ayars 2005



Estimación de Kc en función de ITe (ºC) para espaldera y sprawl

Trellis/	Row Spacing	
Canopy type	(m)	Crop coefficient equation
VSP	1.83 (6 ft.)	$K_c = 0.87/(1 + e^{(-(x - 525)/301)})$
	2.13 (7 ft.)	$K_c = 0.74/(1 + e^{(-(x - 525)/301)})$
	2.44 (8 ft.)	$K_c = 0.65/(1+e^{(-(x-525)/301)})$
	2.74 (9 ft.)	$K_c = 0.58/(1 + e^{(-(x - 525)/301)})$
	3.05 (10 ft.)	$K_c = 0.52/(1+e^{(-(x-525)/301)})$
CA Sprawl	3.05 (10 ft.)	$K_c = 0.84/(1+e^{(-(x-325)/105)})$
	3.35 (11 ft.)	$K_c = 0.76/(1+e^{(-(x-325)/105)})$
	3.66 (12 ft.)	$K_c = 0.70/(1+e^{(-(x-325)/105)})$

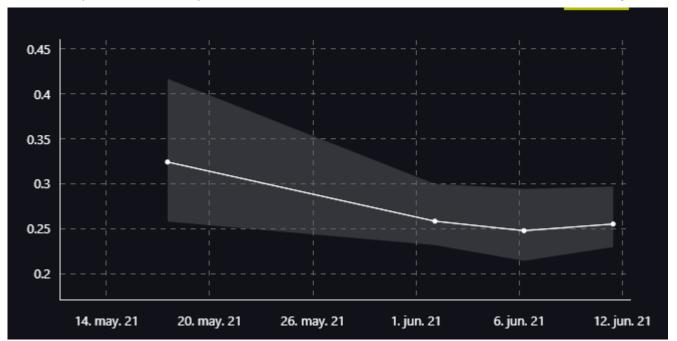
Kc (espaldera, según ancho calle)

MES	ITe (ºC)	2 m	2,5 m	3 m
abr	20	0,13	0,10	0,08
may	120	0,17	0,14	0,11
jun	360	0,29	0,24	0,19
jul	740	0,54	0,45	0,35
ago	1170	0,72	0,60	0,47
sep	1540	0,78	0,64	0,51
oct	1750	0,79	0,65	0,52

Adaptado de Williams 2017

ITe (media del mes) comarca "Campiña", elaborado a partir de Fernández et al. 2013

Estimación de IAF (LAI) mediante imágenes y app



Estimación de Kc mediante NDVI

Tempranillo, Espaldera 2,5 m x 1,2 m, Colmenar de Oreja

sáb., 12. jun. 2021

- media: 0.26
- P₁₀ P₉₀: 0.23 0.30
- mediana: 0.26
- desv. est.: 0.02
- mín / máx: 0.20 0.32

- Tempranillo, Espaldera 2,5 m x 1,2 m
- Colmenar de Oreja, 12-jun-2021

Estimación de Kc mediante NDVI

NDVI = 0.26

 $Kc = 1,44 \times NDVI - 0,1$ (Campos et al. 2010)

Kc = 0.27

Estimación de Kc mediante ITe

ITe = 504 °C

Kc = 0,31 (según Williams 2017)

sáb., 12. jun. 2021

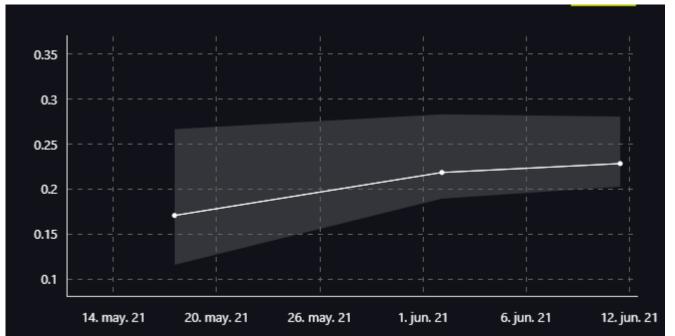
media: 0.26

P₁₀ - P₉₀: 0.23 - 0.30

mediana: 0.26

desv. est.: 0.02

mín / máx: 0.20 - 0.32



Estimación de Kc mediante NDVI

Malvar, Vaso 3 m x 1,5 m, Colmenar de Oreja

sáb., 12. jun. 2021

- media: 0.23
- P₁₀ P₉₀: 0.20 0.28
- mediana: 0.22
- desv. est.: 0.03
- mín / máx: 0.18 0.37

Kc = 0.27

RIEGO DEFICITARIO. Kd

Riego deficitario

Kd: Coeficiente de déficit o de estrés, aplicado a ETc

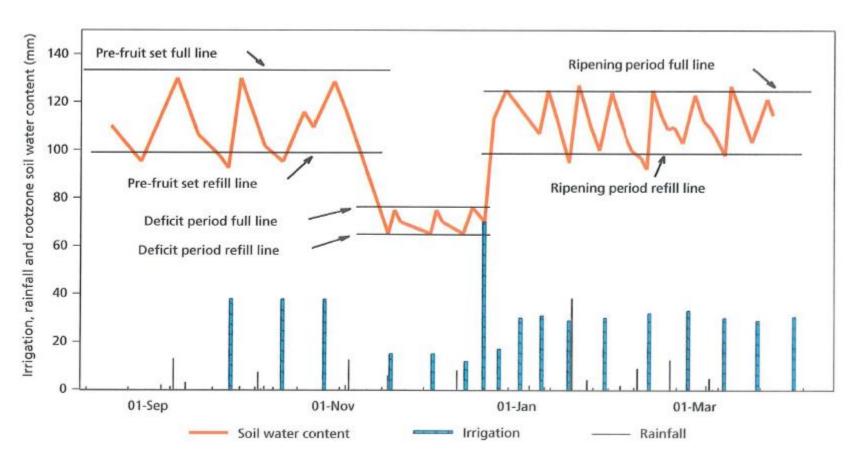
ETo x Kc x Kd

- ➤ Riego deficitario <u>sostenido</u>: Kd continuo durante el ciclo
- ➤ Riego deficitario <u>controlado</u>: Kd variable durante el ciclo

Kd ≈ **50%** - **75%** / **80%** (Williams 2001)

Consideraciones generales

- ✓ Evitar déficit hídrico entre brotación y cuajado.
- ✓ La superficie foliar debe haberse completado en envero. Durante la maduración el crecimiento vegetativo debe ser mínimo o nulo.
- ✓ Evitar estrés hídrico durante la maduración.
- ✓ Asegurar contenido adecuado de agua en el suelo en postvendimia.


Riego deficitario controlado

- ✓ E.g. déficit aplicado después de cuajado, más en variedades tintas que en blancas.
- ✓ Agotar agua fácilmente disponible y entrar de zona de déficit.
- ✓ Aplicar riegos cortos y frecuentes para mantener el déficit en el nivel deseado.
- ✓ Controlar estado hídrico de la planta y el suelo.

Necesidades de riego, espaldera 2,5 m

Mes	ITe (ºC)	ETo (mm)	Kc	Kd	ETc x Kd (mm)	P (mm)	Pe (mm)	Rn (mm)	Rb (mm)
abr	20	44	0,10	1,0	5	52	26	0	0
may	120	76	0,14	1,0	10	50	25	0	0
jun	360	116	0,24	0,8	23	34	17	6	6
jul	740	151	0,45	0,8	54	16	8	46	51
ago	1170	136	0,60	0,8	65	18	9	56	62
sep	1540	94	0,60	0,75	42	28	14	28	31
oct	1750	52	0,60	0,75	23	46	23	0	0
abr-oct	1750	669			222	244	122	136	151

Dosis máximas autorizadas D.O. Vinos de Madrid

SUBZONA	TOTAL	REPOSO	BROTACIÓN	CUAJADO	ENVERO	VENDIMIA
SUBZUNA	IOIAL	REPUSU	CUAJADO	ENVERO	VENDIMIA	CAÍDA HOJA
ARGANDA	140	0	30	70	40	0
NAVALCARNERO S. MARTÍN V.	170	0	40	80	50	0

Riesgos en caso de escasez de agua

- ✓ El estrés hídrico sostenido aumenta el riesgo de reducciones de rendimiento y calidad.
- ✓ Suelos con baja humedad en invierno e inicio de primavera pueden suponer problemas de brotación y rendimientos bajos.
- ✓ El déficit hídrico en floración puede llevar a un mal cuajado y pocas bayas por racimo.
- ✓ El déficit hídrico en post-cuajado puede comprometer el tamaño de la baya y el rendimiento.
- ✓ El déficit hídrico durante y al final de maduración puede llevar a pasificaciones y falta de madurez de las uvas.

MEDIDAS COMPLEMENTARIAS EN CASO DE ESCASEZ

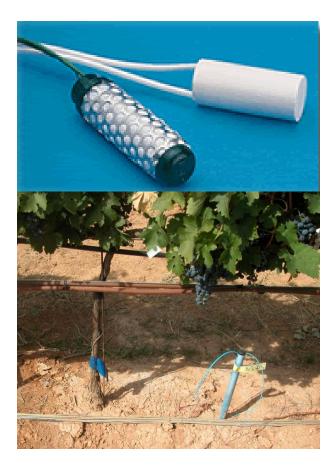
- ✓ Monitorización, gestión, instalaciones de riego → Eficiencia
- ✓ Limitación de la competencia por enyerbados.
- ✓ Empleo de acolchados en la línea.
- ✓ Riego subterráneo.
- ✓ Riego nocturno.
- ✓ Diseño del viñedo (material vegetal, localización, exposición, conducción, etc.).
- ✓ Conducción del viñedo que evite excesos de superficie foliar y sobreexposición de hojas y racimos.
- ✓ Ajuste de la carga de brotes y racimos.
- ✓ Instalación de cortavientos.
- ✓ Establecer prioridades entre viñedos.

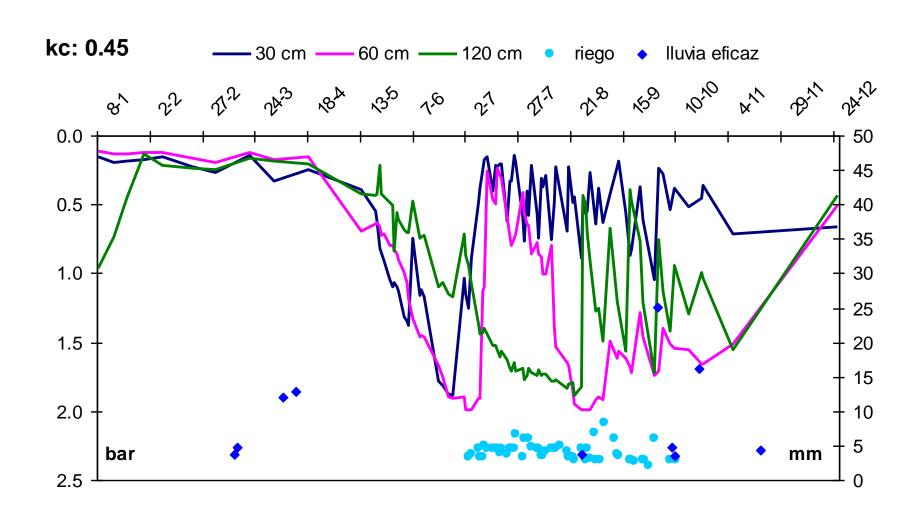
SUELO

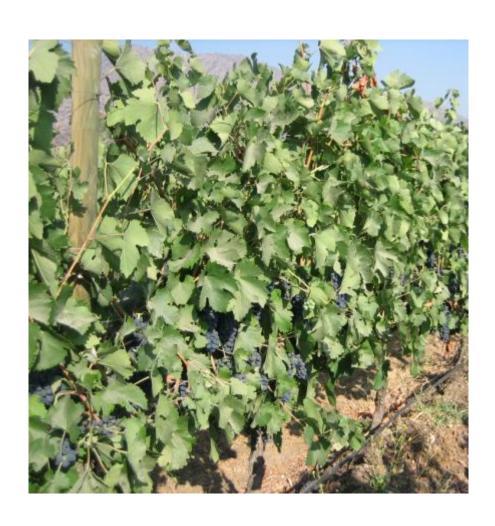
- Humedad (TDR, FDR, etc.)
- Tensión (tensiómetros, sensores de matriz granular, etc.)

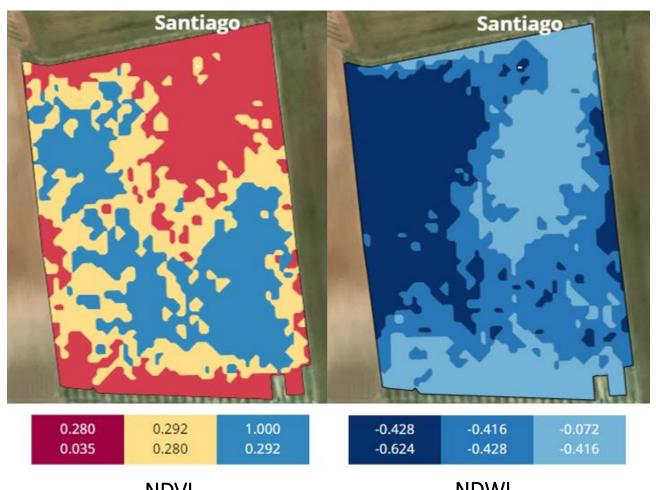
PLANTA

- Estado ápices
- Crecimiento del pámpano y la baya
- Aspecto visual de vegetación y racimos
- Potencial hídrico foliar / tallo
- Temperatura foliar / Crop Water Stress Index
- Teledetección (NDVI, NDWI, CWSI, etc.)
- Diámetro tronco, conductancia estomática, flujo de savia

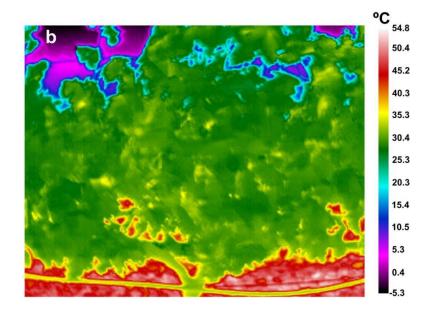


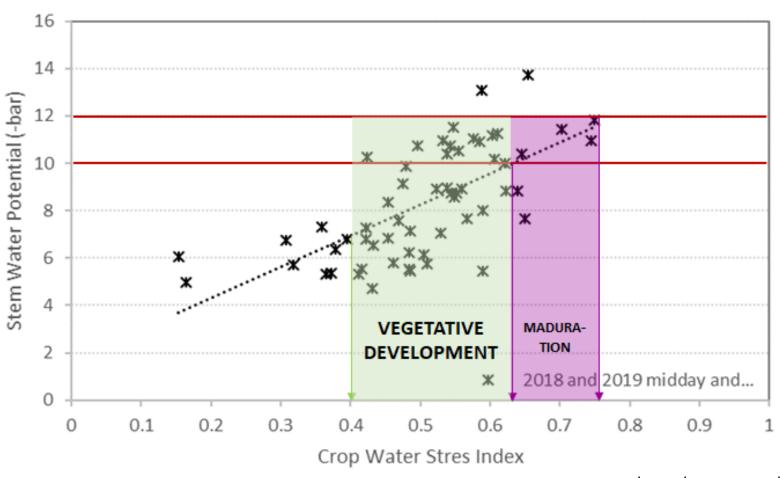






Nivel de estrés hídrico	Ψf aa (MPa)	Ψf 12hs (MPa)	Ψt 12hs (MPa)
No	> -0,2	> -0,8	> -0,8
Suave a moderado	-0,2 a -0,4	-0,8 a -1,2	-0,8 a -1,0
Moderado a intenso	-0,4 a -0,6	-1,2 a -1,4	-1,0 a -1,2
Intenso	< -0,6	< -1,4	< -1,2


NDVI NDWI



$$CWSI = \frac{T_{canopy} - T_{wet}}{T_{dry} - T_{wet}}$$

Camacho-Alonso et al. 2017

MUCHAS GRACIAS POR SU ATENCIÓN

Pedro Junquera González pjunquera@giviti.com www.giviti.com

sisvitimad@ptvino.com

www.ptvino.com/es/sisvitimad/

Actividad del Proyecto "Plan Director para impulsar el sistema de innovación en el sector vitivinícola de la Comunidad de Madrid" de Ref.: OI2019 PTV-5 5681, concedido en la Convocatoria 2019 de ayudas para potenciar la innovación tecnológica e impulsar la transferencia de tecnología al sector productivo comprendido en las prioridades de la Estrategia Regional de Investigación e Innovación para una especialización inteligente (RIS3) de la Comunidad de Madrid a través de entidades de enlace de la innovación tecnológica, cofinanciado en un 25% por el Fondo Europeo de Desarrollo Regional y en otro 25% por la Comunidad de Madrid en el marco del programa operativo FEDER 2014-2020